Lecture 3 — Existence of Analytic solutions — The Method of Majorants

Definition 1. $f, F \in C^{\infty}(I)$ where $I = (c - \epsilon, c + \epsilon)$. We say f is majorized at c by F if

$$|f^{(k)}(c)| \le F^{(k)}(c)$$

and we write $f \ll F$.

Lemma 1. Suppose $f \in G^1_{M,r}(0)$ then $f \ll \phi$ at 0, where

$$\phi(x) = \frac{Mr}{r-x}$$

If f(0) = 0 then $\phi(x) = \frac{Mr}{r-x} - M$.

proof. We have $f \in G^1_{M,r}(0) \Leftrightarrow |f^{(k)}(0)| \leq \frac{Mk!}{r^k}$. Computing derivatives of ϕ we have $\phi'(x) = \frac{Mr}{(r-x)^2}, \dots, \phi^{(k)}(x) = \frac{Mrk!}{(r-x)^{k+1}}$. Evaluated at $x = 0 \implies \phi^{(k)}(0) = \frac{Mrk!}{r^{k+1}}$.

:
$$|f^{(k)}(0)| \le \frac{Mk!}{r^k} = \frac{Mrk!}{r^{k+1}}.$$

(ODE) Case: Consider Cauchy problem

$$v' = g(v), \quad v(0) = \alpha \quad g \in G^1_{M,r}(\Omega).$$

In our attempt to prove the existence of analytic solution, we will construct a problem which behaves worse but can be solved explicitly. Consider

$$u(t) = v(t) - \alpha$$
$$u' = g(u + \alpha) =: f(u)$$

FIG 2.1. Suppose $u(t) = v(t) - \alpha - tv'(t)$

$$\implies u'(0) = 0$$
$$\implies f(0) = 0.$$

 $\begin{aligned} & u'(t) = f(u(t)), \quad u(0) = 0 \\ & u'' = f'(u)u' \quad u''' = f''(u)(u')^2 + f'(u)u'' \ \ldots \end{aligned}$

$$[f(u)]^{(k)} = q_k(f'(u), ..., f^{k-1}(u), u, ..., u^k)$$

with positive polynomial coefficients.

$$u^{(k+1)}(0) = q_k(f'(0), ..., f^k(0), u'(0), ..., u^k(0))$$

Class notes by Ibrahim Al Balushi

We notice that u^k and u^{k+1} are expressed recursively hence we reduce order that way to gain new poly Q

$$=Q_k(f(0), f'(0), ..., f^k(0))$$

with positive coefficients. Assume $f \ll F$ at 0

$$U' = F(U), \qquad U(0) = 0$$

$$\begin{split} |u^{(k+1)}(0)| &= |Q_k(f(0), ..., f^{(k)}(0))| \le Q_k(|f(0)|, ..., |f^{(k)}|) \le Q_k(F(0), ..., F^{(k)}(0)) = U^{(k+1)}(0) \\ \implies u \ll U \text{ at } 0. \\ \text{By assumption } f \in G^1_{M,r}(0) \implies f \ll \phi, \phi = \frac{Mr}{r-x}. \text{ We have } U' = \frac{Mr}{r-U}, \end{split}$$

$$dU(r-U) = Mrdt \implies rU = \frac{1}{2}U^2 + Mrt + C \ (C=0)$$

 $\implies U(t) = r - \sqrt{r^2 - 2Mrt}$ where we chose the negative root to ensure u(0) = 0 remains true. In general $r\sqrt{1-a} = r(1-\frac{1}{2}a-a^2-...)$ taylor expansion, so $U(t) = c_1t + c_2t^2 + ...(c_j \ge 0)$ is analytic therefore u(t) analytic.

Case (System of ODE's) $u'_j(t) = f_j(u_1(t), ..., u_n(t))$ j = 1...n.

Definition 2. $f : \mathbb{R}^n \to \mathbb{R}$ is (real) analytic at $c \in \mathbb{R}^n$ if

(*)
$$f(x) = \sum_{\alpha_1,...,\alpha_n \ge 0} a_{\alpha_1...,\alpha_n} (x_1 - c_1)^{\alpha_1} ... (x_n - c_n)^{\alpha_n}$$

shorthand = $\sum_{|\alpha| \ge 0} a_{\alpha} (x - c)^{\alpha}$ in a nbhd of c.

Suppose (*) converges for some x then,

$$|a_{\alpha}||x_1 - c_1|^{\alpha_1} \dots |x_n - c_n|^{\alpha_n} \to 0$$

as $|\alpha| \to \infty ~i.e ~ \exists M \in \mathbb{R} ~s.t$

$$|a_{\alpha}||x_{1} - c_{1}|^{\alpha_{1}} \dots |x_{n} - c_{n}|^{\alpha_{n}} \le M < \infty$$

FIG 2.2.

$$Q_r(c) = \{ x \in \mathbb{R}^n : |x_i - c_i| < r, \forall i \}.$$

 \mathbb{R}^n cube.

Assume $a_{\alpha}r^{|\alpha|} \leq M < \infty$ $\forall \alpha$. Then (α) converges in $Q_r(c)$

$$|a_{\alpha}||x_{1} - c_{1}|^{\alpha_{1}} \dots |x_{n} - c_{n}|^{\alpha_{n}} \leq |a_{n}|\rho^{|\alpha|} \frac{|x_{1} - c_{1}|^{\alpha_{1}}}{\rho^{\alpha_{1}}} \dots \frac{|x_{n} - c_{n}|^{\alpha_{n}}}{\rho^{\alpha_{n}}} \leq |a_{\alpha}|\rho^{|\alpha|} \delta^{|\alpha|} \leq M\delta^{|\alpha|} \qquad (\delta < 1)$$

i.e if power series (*) converges at pt c, then \exists nbhd of c s.t. $\forall x \in$ nbhd(c), (*) converges.

Definition 3. Let $f, F \in C^{\infty}(\mathbb{R}^n)$. $f \ll F$ if

$$|\partial^{\alpha} f(c)| \le \partial^{\alpha} F(c)$$

where $\partial^{\alpha} f = \partial_1^{\alpha_1} ... \partial_n^{\alpha_n} f$

$$\begin{split} u'_{j} &= f_{j}(u), \quad u_{j}(0) = 0. \\ u''_{j} &= \partial_{k} f_{j}(u) u'_{k}, \quad u'''_{j} = \partial_{l} \partial_{k} f(u) u'_{k} u'_{l} + \partial_{k} f_{j}(u) u''_{k}. \\ u^{(k+1)}_{j} &= [f_{j}(u)]^{(k)} = q_{k}(u', ..., u^{(k)}, \{\partial^{\alpha} f_{j}\}) \quad (|\alpha| \leq k) = Q_{k}(\{\partial^{\alpha} f_{j}(0)\}). \end{split}$$

Suppose

$$f_j \ll F_j$$
. $U'_j = F(U)$, $U_j(0) = 0$.

$$\begin{split} |u_j^{k+1}(0)| &= |Q_k(\{\partial^{\alpha} f_j(0)\})| \leq Q_k(\{|\partial^{\alpha} f_j(0)|\}) \leq Q_k(\{\partial^{\alpha} F_j(0)\}) = U_j^{k+1}(0). \implies u_j \ll U_j. \\ f \in G^1_{M,r}(0) \ : \ |\partial^{\alpha} f(0) \leq M |\alpha|! r^{-|\alpha|}, \text{ then } f \ll \phi \ ; \ \phi = \frac{Mr}{r - (x_1 + \ldots + x_n)}. \end{split}$$

$$f_j \in G^1_{M,r}(0). \qquad U_j = \frac{Mr}{r - (U_1 + \dots + U_n)}, \qquad U_j(0) = 0.$$
$$U_1 = U_2 = \dots U_n = U$$
$$U' = \frac{Mr}{r - nU} \implies U(t) = \frac{r - \sqrt{r^2 - 2nMrt}}{n}.$$

What we have shown was the existence of an analytic solution for a system of ODE's.

Theorem 1 (Cauchy-Kovalesky). $\partial_n u_j = f_j(x, u, \partial_1 u, ... \partial_{n-1} u)$ $u_j(x_1, ... x_{n-1,0}) = \phi_j(x_1, ... x_{n-1})$ are all analytic. Then there exists a unique analytic solution in nbhd of 0.